Increased alpha 1(I) procollagen gene expression in tight skin (TSK) mice myocardial fibroblasts is due to a reduced interaction of a negative regulatory sequence with AP-1 transcription factor.

نویسندگان

  • N Philips
  • R I Bashey
  • S A Jiménez
چکیده

The TSK mouse, a model of fibrosis, displays exaggerated connective tissue accumulation in skin and visceral organs including the heart. To study the mechanisms of myocardial fibrosis in TSK mice, we established several strains of TSK mice myocardial fibroblasts in culture and examined the regulation of collagen gene expression in these cells. These strains displayed increased collagen gene expression in comparison with myocardial fibroblasts established from normal mice. On an average, the TSK myocardial fibroblast cultures showed a 4-fold increase in collagen synthesis and 4.4- and 3.6-fold increases, respectively, in alpha 1(I) and alpha 1(III) collagen mRNA steady state levels. The increased alpha 1(I) and alpha 1(III) collagen mRNA levels were mainly due to increased transcription rates (3.4- and 3.8-fold higher, respectively) of the respective genes. Furthermore, we showed that the up-regulation of alpha 1(I) procollagen gene transcription in TSK mice myocardial fibroblasts was due to the lack of the strong inhibitory influence of a regulatory sequence contained in the promoter region encompassing nucleotides -675 to -804. Nuclear extracts from TSK mice myocardial fibroblasts showed lower DNA binding activity to oligonucleotides spanning the mapped regulatory sequence as well as to a consensus AP-1 sequence, but not to a consensus SP-1 sequence, and supershift experiments with an AP-1 antibody confirmed the interaction of these oligonucleotides with AP-1 protein. These observations indicate that a strong negative regulatory sequence contained within -0.675 to -0.804 kilobase of the alpha 1(I) procollagen promoter binds AP-1 transcription factor and mediates inhibition of gene transcription in normal murine myocardial fibroblasts. The TSK mice myocardial fibroblasts lack this inhibitory control, due to lower available amounts and/or decreased binding activity to this inhibitory sequence, and hence display increased alpha 1(I) procollagen gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased collagen biosynthesis and increased expression of type I and type III procollagen genes in tight skin (TSK) mouse fibroblasts.

The Tight Skin (TSK) mouse is a mutant strain that displays connective tissue abnormalities characterized by excessive accumulation of collagen in skin, subcutaneous tissues, and some internal organs such as the heart. Increased collagen biosynthesis by skin organ cultures from affected mice has been previously demonstrated, but the mechanisms responsible have not been identified. In order to e...

متن کامل

AP-1 overexpression impairs corticosteroid inhibition of collagen production by fibroblasts isolated from asthmatic subjects.

Asthma is characterized by airway remodeling associated with an increase in the deposition of ECM proteins such as type I collagen. These components are mainly produced by fibroblasts. Inhaled corticosteroids are considered the cornerstone of asthma therapy. Despite substantial evidence as to the anti-inflammatory action of corticosteroids, their effect on controlling ECM protein deposition in ...

متن کامل

New Insights into the Assembly of Extracellular Microfibrils from the Analysis of the Fibrillin 1 Mutation in the Tight skin Mouse

The Tight skin (Tsk) mutation is a duplication of the mouse fibrillin 1 (Fbn1) gene that results in a larger (418 kD) than normal (350 kD) protein; Tsk/+ mice display increased connective tissue, bone overgrowth, and lung emphysema. Lung emphysema, bone overgrowth, and vascular complications are the distinctive traits of mice with reduced Fbn1 gene expression and of Marfan syndrome (MFS) patien...

متن کامل

Targeting of cadherin-11 decreases skin fibrosis in the tight skin-1 mouse model

OBJECTIVE Systemic sclerosis (SSc) is an autoimmune disease clinically manifesting as progressive fibrosis of the skin and internal organs. Cadherin-11 (CDH11) expression is increased in fibrotic skin and lung tissue. Targeting CDH11 may be an effective approach to treating fibrosis. We hypothesize that targeting CDH11 will decrease fibrosis in the tight skin-1 (Tsk-1) mouse model. METHODS CD...

متن کامل

Molecular Study of Vascular Endothelial Growth Factor Gene in Iranian Patients after Myocardial Infarction

Background: Stimulation of collateral artery growth (arteriogenesis) and/or capillary network growth (angiogenesis) would be beneficial to the patients with myocardial infarction. To understand the central role of vascular endothelial growth factor (VEGF) in biological angiogenesis, we performed molecular analysis of the VEGF gene in patients afflicted with acute myocardial infarction (AMI). Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 270 16  شماره 

صفحات  -

تاریخ انتشار 1995